NOTE ON MATH 2060: MATHEMATICAL ANALYSIS II: 2018-19

CHI-WAI LEUNG

1. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a,b] and m < f < M on
a, bl .
(ii): [Let ]P ca=1x9 < x1 < ... <z =>bdenote a partition on [a,b]; Put Az; = z; — x;—1 and
|IP|| = max Az;.
(iii): M;(f, P) :=sup{f(x):x € [xi—1,zi}; mi(f, P) == inf{f(x) : x € [x;_1,2;}.
Set wl(f, P) = Mz(f, P) - mz(f, P)
(iv): (the upper sum of f): U(f, P) =Y M;(f, P)Ax;
(the lower sum of f). L(f,P):=>_ m;(f, P)Ax;.
Remark 1.1. It is clear that for any partition on [a,b], we always have
(i) m(b—a) < L(f,P) <U(f,P) < M(b—a).
(“) L(_f’P) = _U(faP) and U(_f’P) = _L(faP)

The following lemma is the critical step in this section.

Lemma 1.2. Let P and Q be the partitions on [a,b]. We have the following assertions.

(i) If P C Q, then L(f,P) < L(f,Q) < U(f,Q) < U(f, P).
(i) We always have L(f, P) < U(f,Q).

Proof. For Part (i), we first claim that L(f,P) < L(f,Q) if P C Q. By using the induction on
[ := #Q — #P, it suffices to show that L(f,P) < L(f,Q)asl=1. Let P:ra=xzo<x1 < --- <xp=0>
and @ = P U {c}. Then ¢ € (zs_1,x5) for some s. Notice that we have

ms(fa P) < min{ms(f7 Q)7 m8+1(f7 Q)}
So, we have

ms(fa P)(xs - xs—l) < ms(fv Q)(C - xs—l) + ms—l—l(fv Q)(xs - C)-

This gives the following inequality as desired.
(11) L(fa Q) - L(f’ P) = ms(fa Q)(C - ‘Tsfl) + merl(fa Q)(:CS - C) - ms(f’ P)(IES - ':68*1) = 0.

Now by considering — f in the Inequality 1.1 above, we see that U(f,Q) < U(f, P).
For Part (i7), let P and @ be any pair of partitions on [a,b]. Notice that P U @ is also a partition on
[a,b] with PC PUQ and Q C PUQ. So, Part (i) implies that

L(f,P)<L(f,PUQ)<U(f,PUQ) <U([,Q).
The proof is complete. O
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The following plays an important role in this chapter.

Definition 1.3. Let f be a bounded function on [a,b]. The upper integral (resp. lower integral) of f
over [a, b], write f;f (resp. f;f), 1s defined by

" b
/ f=mf{U(f, P): P is a partation on [a,b]}.
(resp.
b
/ f=sup{L(f,P): P is a partation on [a,b]}.)

Notice that the upper integral and lower integral of f must exist by Remark 1.1.

Proposition 1.4. Let f and g both are bounded functions on [a,b]. With the notation as above, we

always have
b T b
YN

LU+AZs[ﬂf+mslﬁﬁﬂﬂsZZ+Z?.

Proof. Part (i) follows from Lemma 1.2 at once.
Part (ii) is clearly obtained by L(—f, P) = —=U(f, P).
For proving the inequality fabf + fabg < f;(f + g) < first. It is clear that we have L(f, P)+ L(g, P) <

L(f+g, P) for all partitions P on [a,b]. Now let P, and P, be any partition on [a,b]. Then by Lemma
1.2, we have

L(f.P1) + L(g, Ps) < L(f, P/ U P) + L(g, P, UPy) < L(f + 9. P, U Py) < / (f +9).

So, we have

(1.2) i i Lfﬂ}

As before, we consider — f and —g in the Inequality 1.2, we get f;(f +9) < f;f + f;g as desired. [

The following example shows the strict inequality in Proposition 1.4 (iii) may hold in general.

Example 1.5. Define a function f,g:[0,1] — R by
1 if ©€|[0,1]NQ;
ﬂm:{ o

-1 otherwise.



and

1 otherwise.

{—1 if ©€10,1]NQ;

Then it is easy to see that f + g =0 and

ffzfgzl and /Llf
AS

I
S—
2
Q
I
|
—_

So, we have

e

We can now reaching the main definition in this chapter.

Definition 1.6. Let f be a bounded function on [a,b]. We say that f is Riemann integrable over [a, b]
if f_baf = f;f In this case, we write f;f for this common value and it is called the Riemann integral
of f over [a,b].

Also, write R[a,b] for the class of Riemann integrable functions on |[a,b).

Proposition 1.7. With the notation as above, R[a,b] is a vector space over R and the integral

/ feRabH/feR

defines a linear functional, that is, af + Bg € Rla,b] and fa (af + Bg) = Oéfabf i ﬁfabg for all
f,9 € Rla,b] and o, B € R.

Proof. Let f,g € Rla,b] and «, 5 € R. Notice that if a > 0, it is clear that f_;af = af_;f = af;f -
af’f = [Paf. Also, if a < 0, we have [af = af’f=a [’ f=af’f = [Paf. Therefore, we have

f;af = af;f for all « € R. For showing f + g € Ra,b] and fab(f—i-g) = f(ff—l—f;g, these will
follows from Proposition 1.4 (iii) at once. The proof is finished. O

The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P:a=2¢p <21 <--- <z, =band 1 <i<n, put

wi(f, P) = sup{|f(z) — f(a')| s 2,2 € [wi1, 2]}
It is easy to see that U(f,P) — L(f, P) = >, wi(f, P)Ax;.

Theorem 1.8. Let f be a bounded function on [a,b]. Then f € Rla,b] if and only if for all € > 0,
there is a partition P:a =1x9 < --- <z, =0b on [a,b] such that

(1.3) 0<U(f,P) = L(f,P) = > wi(f,P)Az; <.
=1
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Proof. Suppose that f € R[a,b]. Let € > 0. Then by the definition of the upper integral and lower

integral of f, we can find the partitions P and @ such that U(f, P) < f;f + ¢ and fabf —e < L(f,Q).
By considering the partition P U (), we see that o

/f—e<L(f,Q><L<f,PuQ><U(f,PuQ><Uf, /f+s

Since f;f = faf = faf, we have 0 < U(f,PUQ) — L(f,PUQ) < 2¢. So, the partition PUQ is as
desired. o

Conversely, let € > 0, assume that the Inequality 1.3 above holds for some partition P. Notice that
we have

L(f.P) < Z fsffszf(f,m.

So, we have 0 < f_;f - f;f < ¢ for all € > 0. The proof is finished. O

Remark 1.9. Theorem 1.8 tells us that a bounded function f is Riemann integrable over |a,b] if and
only if the “size” of the discontinuous set of f is arbitrary small.

Example 1.10. Let f : [0,1] — R be the function defined by

if x = —, where p, q are relatively prime positive integers;

f) = {O otherwise.

Then f € R[0,1].

(Notice that the set of all discontinuous points of f, say D, is just the set of all (0,1] N Q. Since the
set (0,1] N Q is countable, we can write (0,1] NQ = {21, 22, ....}. So, if we let m(D) be the “size” of
the set D, then m(D) = m(U;2{zi}) = Yooy m({zi}) = 0, in here, you may think that the size of
each set {z;} is 0. )

Proof. Let € > 0. By Theorem 1.8, it aims to find a partition P on [0, 1] such that

U(f,P)—L(f,P)<e
Notice that for x € [0, 1] such that f(z) > ¢ if and only if x = ¢/p for a pair of relatively prime positive
integers p, ¢ with % > e. Since 1 < g < p, there are only finitely many pairs of relatively prime positive
integers p and ¢ such that f(%) >e. So, if welet S :={x €]0,1]: f(x) > ¢}, then S is a finite subset
of [0,1]. Let L be the number of the elements in S. Then, for any partition P:a=1x¢ < -+ < x,, = 1,

we have .
Yowilf,P) A= Y.+ > ) wlf,P)Ax;
=1 Z':[{L‘ifl,z‘i]ﬂSZQ i:[:l?i,l,z‘i]ﬂs;ﬁ@

Notice that if [x;—1,z;] NS = 0, then we have w;(f, P) < e and thus,

> wi(f,P)Az;<e > Ar; <e(1-0).

i:[:l?i_l,mi]ﬁS:@ i:[zi_l,mi}ﬂS:(Z)

D=

On the other hand, since there are at most 2L sub-intervals [z;_1, x;] such that [z;_1,2;] NS # () and
wi(f,P) <1 foralli=1,...,n, so, we have

S wilf,P) Az <1 Y Ax<2L|P|.

Z‘Z[:I?i_l,xi]ﬁS#@ i:[mi_hxi}ﬂS#@



We can now conclude that for any partition P, we have
n
> wilf, P)Az; <e+2L||P|.
i=1

So, if we take a partition P with ||P|| < e/(2L), then we have > ", w;(f, P)Az; < 2e.
The proof is finished. O]

Proposition 1.11. Let f be a function defined on |a,b]. If f is either monotone or continuous on
[a,b], then f € R[a,b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P : a = zy < -+ < x,, = b, we have w;(f, P) = f(z;) — f(x;—1). So, if
| P|| < e, we have

n n n

D wilf, P)YAz =Y (f@)—f(xio)Azi < |PI| D (f(x)—f(zi1) = [PI(f(b)—f(a) < e(f(b)—F(a)).
i=1 i=1 i=1

Therefore, f € Rla,b] if f is monotone.

Suppose that f is continuous on [a,b]. Then f is uniform continuous on [a,b]. Then for any ¢ > 0,
there is § > 0 such that |f(z) — f(2')| < € as z,2’ € [a,b] with |z —2'| < 4. So, if we choose a partition
P with ||P|| <6, then w;(f, P) < ¢ for all i. This implies that

n n
S wilf, P)Az; < ey Az =e(b— a).
i=1 i=1
The proof is complete. 0

Proposition 1.12. We have the following assertions.

(i) If f.g € Rla,b] with f < g, then [\ f < [ g.
(ii) If f € Rla,b], then the absolute valued function |f| € Rla,b]. In this case, we have |f;f| <

b
Ja 11
Proof. For Part (i), it is clear that we have the inequality U(f, P) < U(g, P) for any partition P. So,

we have [ f = [1f < [lg = [}g.

For Part (i7), the integrability of |f| follows immediately from Theorem 1.8 and the simple inequality
1£1(&") = [f[(«")] < [f(z') = f(@")| for all 2’,2" € [a,b]. Thus, we have U(|f|,P) — L(|f],P) <
U(f,P)— L(f,P) for any partition P on [a,b|.

Finally, since we have —f < |f| < f, by Part (i), we have ]fabf\ < f; |f| at once. O

Proposition 1.13. Let a < ¢ < b. We have f € R[a,b] if and only if the restrictions flj, € R|a,c]
and flicp € Rlc,b]. In this case we have

(1.4) A@=é%+l%.

Proof. Let f1 := f|[a,c] and fy := f|[c,b}-
It is clear that we always have
U(f1, 1) = L(f1, P1) + U(f2, P2) — L(f2, 2) = U(P, f) = L(f, P)

for any partition P; on [a,c] and P; on [c, b] with P = P; U Ps.
From this, we can show the sufficient condition at once.
For showing the necessary condition, since f € Rla,b], for any ¢ > 0, there is a partition @ on [a, b]
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such that U(f,Q) — L(f,Q) < & by Theorem 1.8. Notice that there are partitions P, and P, on [a, ]
and [c, b] respectively such that P := Q U {c} = P U P,. Thus, we have

U(f1, Pr) = L(f1, P1) + U(f2, P2) = L(f2, P2) = U(f, P) = L(f, P) < U(f,Q) = L(f,Q) <&
So, we have f; € R[a,c| and f2 € R]c, b].
It remains to show the Equation 1.4 above. Notice that for any partition P, on [a,c] and P, on [c,b],
we have

b b
L(fl,P1)+L(f2,P2):L(f,PluPQ)g/f:/ f

So, we have fac f+ fcb f< f; f. Then the inverse inequality can be obtained at once by considering
the function —f. Then the resulted is obtained by using Theorem 1.8. g

Proposition 1.14. Let f and g be Riemann integrable functions defined ion [a,b]. Then the pointwise
product function f - g € R|a,b].

Proof. We first show that the square function f? is Riemann integrable. In fact, if we let M =
sup{|f(z)| : € [a,b]}, then we have wy(f2, P) < 2Mwy(f, P) for any partition P : a = z9 < --- <
an = b because we always have |f2(z) — f2(2')| < 2M|f(z) — f(2')| for all z,2" € [a,b]. Then by
Theorem 1.8, the square function f2 € R|a,b).

This, together with the identity f-g = 1((f + g)?> — f> — ¢?). The result follows.

O

Remark 1.15. In the proof of Proposition 1.14, we have shown that if f € Rla,b], then so is its
square function f2. However, the converse does not hold. For exzample, if we consider f(z) = 1 for
r€QnNI0,1] and f(z) = —1 for x € Q°N[0,1], then f & R[0,1] but f>=1 on [0,1].

Proposition 1.16. (Mean Value Theorem for Integrals)
Let f and g be the functions defined on |a,b]. Assume that f is continuous and g is a non-negative
Riemann integrable function. Then, there is a point £ € (a,b) such that

b b
(1.5) / f(@)g(x)dz = £(€) / o(z)d.

Proof. By the continuity of f on [a,b], there exist two points 1 and x2 in [a, b] such that
f(z1) =m :=min f(z); and f(z2) = M := max f(x).
We may assume that a < x7 < x9 < b. From this, since g < 0, we have
my(x) < f(x)g(x) < Mg(x)

for all x € [a,b]. From this and Proposition 1.14 above, we have

b b b
m/gs/fgSM/g-
a a a

So, if f(f g = 0, then the result follows at once.
We may now suppose that f; g > 0. The above inequality shows that

b
fabfg < f(x2) = M.
Ji 9

Therefore, there is a point £ € [x1,x2] C [a, b] so that the Equation 1.5 holds by using the Intermediate
Value Theorem for the function f. Thus, it remains to show that such element ¢ can be chosen in

(a,b).

m = f(z1) <



Let a < x1 < 29 < b be as above.

If 1 and z9 can be found so that a < x1 < x9 < b, then the result is proved immediately since
€ € [x1,22] C (a,b) in this case.

Now suppose that z7 or zo does not exist in (a,b), i.e., m = f(a) < f(x) for all z € (a,b] or
f(z) < f(b) = M for all z € [a,b).

Claim 1: If f(a) < f(z) for all x € (a,b], then f fg> f(a f g and hence, & € (a,z2] C (a,b].

For showing Claim1, put h(x) := f(z) — f( ) for « € [a,b]. Then h is continuous on [a,b] and h > 0
on (a,b]. This implies that fcd h > 0 for any subinterval [c,d] C [a,b]. (Why?)

On the other hand, since fbg = fbg > 0, there is a partition P : a = 29 < -+ < x, = b so that
L(g,P) > 0. This implies that myg (g, P) > 0 for some sub-interval [zj_1, zx|. Therefore, we have

/hg>/ hg > my(g, )/ h > 0.
—1

Hence, we have f fg> f(a f g. Claim 1 follows.

Similarly, one can show that if f(x) < f(b) = M for all z € [a,b), then we have f fa< fb f g.
This, together with Claim 1 give us that such £ can be found in (a,b). The proof is finished. O

2. FUNDAMENTAL THEOREM OF CALCULUS

Now if f € R]a,b|, then by Proposition 1.13, we can define a function F : [a,b] — R by

if e =
@1 (o) = {3]” ifZ < Z <b.

Theorem 2.1. Fundamental Theorem of Calculus: With the notation as above, assume that
f € Rla,b], we have the following assertion.
(i) If there is a continuous function H on [a,b] which is differentiable on (a,b) with H = f,
then f;f = H(b) — H(a). In this case, H is called an indefinite integral of f. (note: if
Hy and Hy both are the indefinite integrals of f, then by the Mean Value Theorem, we have
Hy = Hy + constant).
(ii) The function F defined as in Eq. 2.1 above is continuous on [a,b|. Furthermore, if f is
continuous on [a,b], then F' exists on (a,b) and F' = f on (a,b).

Proof. For Part (i), notice that for any partition P :a = xg < --- < x, = b, then by the Mean Value
Theorem, for each [z;_1,z;], there is £ € (x;_1,x;) such that F(x;) — F(z;—1) = F'(§)Ax; = f(§)Awx;.
So, we have

P)SZf(f)AxiZZF(SCi)—F(%fl)ZF(b)—F(a) <U(f,P)

for all partitions P on [a,b]. This gives

/abfzfabeF(b)—F(a)Sffz/abf
as desired. o

For showing the continuity of F' in Part (ii), let a < ¢ < x < b. If |f| < M on [a,b], then we have
|F(z)—F(c)| = | [ f| < M(z—c). So, limy_scq F(2) = F(c). Similarly, we also have lim,_,._ F(z) =
F(c). Thus F is continuous on |[a, b].

Now assume that f is continuous on [a,b]. Notice that for any ¢t > 0 with a < ¢ < ¢+t < b, we have

inf f(x)gl(F(c—l—t / f< sup f(@).

z€[c,c+t] t x€[c,ctt]
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1 1
Since f is continuous at ¢, we see that lim —(F(c+t)—F(c)) = f(c). Similarly, we have lim —(F(c+
t—0+ ¢ t—0— ¢t

t) — F(c)) = f(c). So, we have F'(c) = f(c) as desired. The proof is finished. O

3. RIEMANN SUMS AND CHANGE OF VARIABLES FORMULA

Definition 3.1. For each bounded function f on [a,b]. Call R(f,P,{&}) = > f(&)Ax;, where
& € [xi—1,x;], the Riemann sum of f over [a,b].
We say that the Riemann sum R(f,P,{&}) converges to a number A as ||P|| — 0, write A =

||113i||m0R(f’ P, {&}), if for any € > 0, there is § > 0 such that
H

‘A - R(f7 P7 {5’6})‘ <e
whenever | P|| < & and for any & € [x;—1,x;].

Proposition 3.2. Let f be a function defined on [a,b]. If the limit lim R(f,P,{&}) = A euwists,

li
[l P|—0
then f is automatically bounded.

Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition P : a = zg <
- < @y, = bsuch that | Y ) f(&)Ax,| < 1+ |A| for any & € [z_1,2]. Since f is unbounded, we
may assume that f is unbounded on [a,z1]. In particular, we choose & = zy for k = 2,...,n. Also, we
can choose & € [a,z1] such that

[FE)IAT > 1+ Al + | Y flax) Ay,
k=2

It leads to a contradiction because we have 1+ [A| > |f(&)|Az1 — | D p_y f(xk)Azy|. The proof is
finished. O

Lemma 3.3. f € Rla,b] if and only if for any € > 0, there is § > 0 such that U(f,P) — L(f,P) < ¢
whenever || P|| < 4.

Proof. The converse follows from Theorem 1.8.

Assume that f is integrable over [a,b]. Let € > 0. Then there is a partition Q : a = yg < ... < y; = bon
[a,b] such that U(f,Q) — L(f,Q) < e. Now take 0 < é < ¢/l. Suppose that P:a =29 < ... <z, =0
with ||P|| < d. Then we have

U(f,P)— L(f,P)=1+1I
where
I= Y wilf,P)Ax;
QN[ —1,x;]=0
and
IT = > wilf, P)A
QN [wi—1,x]#0
Notice that we have
I<U(f,Q)—L(f,Q) <e
and
H<M-my Y Ar< (M—m).2z§:2(M—m)s.
QN [wi—1,x]#0
The proof is finished. O
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Theorem 3.4. f € Rla,b] if and only if the Riemann sum R(f, P,{{}) is convergent. In this case,
b
R(f,P,{&}) converges to/ f(z)dz as ||P|| — 0.

Proof. For the proof (=) : we first note that we always have

and ,
uﬁMS/fmmsvmm

for any partition P and §; € [z;—1,z;].
Now let e > 0. Lemma 3.3 gives 0 > 0 such that U(f, P) — L(f, P) < € as ||P|| < d. Then we have

b
\/fmm—MﬂR%m<€

b
as ||P|| < ¢ and & € [x;—1,2;]. The necessary part is proved and R(f, P,{&;}) converges to / f(z)dz.
For (<) : assume that there is a number A such that for any € > 0, there is 6 > 0, we have
A—e<R(f,P{&}) <A+e

for any partition P with ||P|| < ¢ and &; € [x;—1, 4]

Notice that f is automatically bounded in this case by Proposition 3.2.

Now fix a partition P with ||P|| < 0. Then for each [z;_1,x;], choose & € [z;_1,x;] such that
M;(f,P) —e < f(&). This implies that we have

U(f,P)—€(b—CL)SR(f,P,{fZ})<A+€

So we have shown that for any € > 0, there is a partition P such that

(3.1) /bf(x)dx U, P) < A+e(l+b—a).

By considering — f, note that the Riemann sum of —f will converge to —A. The inequality 3.1 will
imply that for any € > 0, there is a partition P such that

b b
A—6(1+b—a)§/f(m)dxg/f(x)deA—i—e(l-i—b—a).
The proof is finished. O]

Theorem 3.5. Let f € R[c,d] and let ¢ : [a,b] — [c,d] be a strictly increasing C* function with
fla) =cand f(b) =d.

Then f o ¢ € Rla,b], moreover, we have
d b
[tz = [ sotens @

Proof. Let A = fcdf(x)dx. By Theorem 3.4, we need to show that for all € > 0, there is § > 0 such
that

[A= " F(@(&))d (€r) Dti| < &

for all & € [tx—1,tx] whenever Q :a =ty < ... < t,, = b with ||Q|| < J.
Now let € > 0. Then by Lemma 3.3 and Theorem 3.4, there is §; > 0 such that

(3.2) A= flm)Day| < e
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and
(3.3) > wi(f, P)Any <e

for all m, € [xg—1,xk] whenever P:c =1z < ... < x, = d with ||P|| < d;.

Now put = = ¢(t) for t € [a, b].

Now since ¢ and ¢’ are continuous on [a,b], there is 6 > 0 such that |¢(t) — ¢(¢')| < 01 and |¢'(t) —
¢ ()| < e for all t,t" infa,b] with [t —t'| <.

Now let Q :a =ty < ... <ty =bwith ||Q| < 6. If we put x = ¢(t;), then P:c=2p < .... <z, =d
is a partition on [c, d] with || P|| < é; because ¢ is strictly increasing.

Note that the Mean Value Theorem implies that for each [t;_1,1;], there is § € (tx—1,t;) such that

Azy = d(tr) — Pltr—1) = ¢'(§) Aty
This yields that
(3.4) |Azy — ¢ (k) Dty| < eAty,

for any & € [ty—1,tx] for all k = 1,...,m because of the choice of ¢.
Now for any & € [tx—1, x|, we have

[A=>" F(@(&))S (&) Dte] < [A =" F((E1))0 () At
(3.5) HI) D F OGNS ()AL — > F(D(E))D (&) At
HID D F (OGNS ()AL — > F(d(6k)D (&) Aty

Notice that inequality 3.2 implies that

[A=" F(@ENS (€0 Dt = [A = F($(&h) D] <.

Also, since we have |¢/(&}) — ¢'(&x)| < € for all k = 1,..,m, we have

D FGENS (G At — > F(9(0)¢ (&) Ati| < M(b— a)e

where |f(x)| < M for all z € [¢,d].
On the other hand, by using inequality 3.4 we have

|§' (&) Aty| < Ay + eAty,

for all k. This, together with inequality 3.3 imply that

1> F (@GN () Atk — > F(D(&R)D (&) Aty
<D wrl(f, P () At (- (85 (Er) € [, 74])

< wil(f, P)(Axy + eAty,)
<e+2M(b—a)e.

Finally by inequality 3.5, we have
A= F(¢(&)e (&) Atr| < e+ M(b—a)e + e+ 2M(b— a)e.

The proof is finished. O
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4. IMPROPER RIEMANN INTEGRALS

Definition 4.1. Let —0co < a < b < 00.

(i) Let f be a function defined on [a,00). Assume that the restriction fliqq) is integrable over

00 T
[a,T] for all T > a. Put / f= Tlim [ if this limit exists.
a =X Jq
Similarly, we can define ffoof if [ is defined on (—o0,b).
b b
(i) If f is defined on (a,b] and fliy € Rlc,b] for all a < ¢ <b. Put / f = £m+ fof it

exists.
Similarly, we can define f(ff if f is defined on [a,b).
(iii) As f is defined on R, if [~ f and fi]oo [ both exist, then we put [*_f = fi)oo f+ 1
In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the
integrals are convergent.

Example 4.2. Define (formally) an improper integral I'(s) ( called the T'-function) as follows:

o0
I'(s) := / ¥ te % dx
0
for s € R. Then I'(s) is convergent if and only if s > 0.

Proof. Put I(s) := fol z*le~"dx and I1(s) := [ a* te "dz. We first claim that the integral II(s)
is convergent for all s € R.
In fact, if we fix s € R, then we have

xs—l

lim — = 0.
T—00 61/2
-1

So there is M > 1 such that :Zi/Q <1 for all x > M. Thus we have

o0 o0
0< / 2 e %dx < / e 24y < 0.
M M

Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < n < 1, we have

! ! 11— if s — 14 —1;
OS/ xs—le—wdxg/ xs_ldx: {s( 77) 1 s 7é ’
n n

—lInn otherwise .

1
Thus the integral I(s) = lim / 25 te™"dzx is convergent if s > 0.
n—0+ n

Conversely, we also have

—1 .
/1xslezdx>el/lxsldx: {67(1_778) lfs_l#_l;
n n

—ellnn otherwise .

So if s <0, then fnl ¥ le %dr is divergent as 7 — 0+4. The result follows. O

5. UNIFORM CONVERGENCE OF A SEQUENCE OF DIFFERENTIABLE FUNCTIONS
Proposition 5.1. Let f, : (a,b) — R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(x) point-wise converges to a function f(z) on (a,b);
(ii) : each f, is a Ct function on (a,b);
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(i11) : fl, — g uniformly on (a,b).
Then f is a C'-function on (a,b) with f' = g.

Proof. Fix ¢ € (a,b). Then for each z with ¢ < z < b (similarly, we can prove it in the same way as
a < z < c¢), the Fundamental Theorem of Calculus implies that

= [ e+ gate)

Since f] — ¢ uniformly on (a,b), we see that

[ ot — [ gteya

This gives
x
(5) ﬂ@=/g@ﬁ+ﬂd
(&
for all x € (¢,b). Similarly, we have f(z) = [ g(t)dt + f(c) for all z € (a,b).
On the other hand, g is continuous on (a b) since each f/ is continuous and f] — ¢ uniformly on
(a,b). Equation 5.1 will tell us that f’ exists and f' = g on (a,b). The proof is finished. O

Proposition 5.2. Let (f,) be a sequence of differentiable functions defined on (a,b). Assume that
(i): there is a point ¢ € (a,b) such that lim f,,(c) exists;
(ii): fI converges uniformly to a function g on (a,b).
Then
(a): fn converges uniformly to a function f on (a,b);
(b): f is differentiable on (a,b) and f' = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let € > 0. Then by the assumptions (7) and (i7), there is a positive integer N such that

[fm(c) = fule)l <e and |fj,(2) — fo(z)| <e

for all m,n > N and for all x € (a,b). Now fix ¢ < x < b and m,n > N. To apply the Mean Value
Theorem for f,,, — f, on (¢, x), then there is a point £ between ¢ and x such that

(5'2) fm(x) - fn(x) - fm(c) - fn(c) + (fr,n(f) - fé(&))(x - C)'
This implies that

(@) = fu(@)] < [fim(0) = fulo)l + £, () = fa(llz — o] <e+ (b—a)e

for all m,n > N and for all x € (¢,b). Similarly, when x € (a,c), we also have

| fm(x) — fn(z)] <e+4 (b—a)e.

So Part (a) follows.
Let f be the uniform limit of (f,) on (a,b)
For Part (b), we fix u € (a,b). We are going to show

i L@ = @)

T—u €T —1U

= g(u).
Let € > 0. Since (f},) is uniformly convergent on (a,b), there is N € N such that
(5:3) (@) = fa(a)] <e
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for all m,n > N and for all x € (a,b)
Note that for all m > N and z € (a,b) \ {u}, applying the Mean value Theorem for f,, — fn as before,
we have

fu®) = (@) _ fmlw) = f(u)

r—1U r—1U

+ (fm(©) = v (©)

for some & between u and .
So Eq.5.3 implies that

fm(®) = fm(u) — fn(x) = fn(w)

5.4 <
(54) | r—u r—u [=e
for all m > N and for all z € (a,b) with x # u.
Taking m — oo in Eq.5.4, we have

S@) = f)  fue) = ),

T —u T —Uu
Hence we have
fl@) = flw)
=~ 7 -7 <
‘ r—1U fN(u)’_ xr—c r—1U r—1U

I = I ).

‘f(x) —flu)  fn(z) = fn(u) I+ ‘fN(CC) —In(w)

N (w)]

§6+|fN

- f]/v(u)\ < g for 0 < |z —u| < 4, then we have
(5.5) yw

for 0 < | —u| < 0. On the other hand, by the choice of N, we have |f),(y) — fx(y)] < € for all
y € (a,b) and m > N. So we have |g(u) — fj(u)] < e. This together with Eq.5.5 give

f(x) — fw)

So if we can take 0 < § such that \W

— fn(u)] < 2¢

| —g(u)| <3¢
T —u
as 0 < |z —u| <, that is we have
lim f(.%') — f(u) — g(u)
T—u T — U
The proof is finished. O

Remark 5.3. The uniform convergence assumption of (f},) in Propositions 5.1 and 5.2 is essential.

Example 5.4. Let f,(x) := ——%— for x € (=1,1). Then we have

x
1+n2x2

2.2 - :
lim 1—n"z” )0 if x # 0;
1 ifx=0.

On the other hand, f, — 0 uniformly on (—=1,1). In fact, if f}(1/n) =0 for all n = 1,2, .., then f,
attains the mazimal value fr(1/n) = % at x = 1/n for each n = 1,... and hence, f, — 0 uniformly
on (—1,1).

So Propositions 5.1 and 5.2 does not hold. Note that (f]) does not converge uniformly to g on (—1,1).
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6. DINI’S THEOREM

Recall that a subset A of R is said to be compact if for any family open intervals cover {J;};cs of
A, that is, each J; is and open interval and A C | J;c; Ji, we can find finitely many J;, ..., J;, such
that A C J;, U--- U Jiy.

Let us recall the following important result.

Theorem 6.1. A subset A of R is compact if and only if any sequence (x,) in A has a convergent
subsequence (zy,) such that limy, x,, € A. In particular, every closed and bounded interval is compact
by using the Bolzano- Weierstrass Theorem.

Proposition 6.2. (Dini’s Theorem): Let A be a compact subset of R and f, : A — R be a sequence
of continuous functions defined on A. Suppose that
(i) for each x € A, we have fn(x) < fpy1(z) for alln=1,2...;
(ii) the pointwise limit f(x) := lim, f,(x) ezists for all x € A;
(iii) f is continuous on A.
Then f, converges to f uniformly on A.
Proof. Let g, := f — f, defined on A. Then each g, is continuous and g¢,(x) | 0 pointwise on A. It

suffices to show that g, converges to 0 uniformly on A.
Method I: Suppose not. Then there is € > 0 such that for all positive integer N, we have

(6'1) gn(xn) > e
for some n > N and some z, € A. From this, by passing to a subsequence we may assume that
gn(xy) > € for all n = 1,2,.... Then by using the compactness of A, Theorem 6.1 gives a convergent

subsequence (z, ) of (z,) in A. Let z := lilgnxnk € A. Since gn,(2) | 0 as k — oo. So, there is a
positive integer K such that 0 < g,, (2) < /2. Since gy, is continuous at z and lim z,, = z, we have
K3

lim gp,, (Tn,) = gny (2). So, we can choose i large enough such that i > K
7

Ini (Tn;) < Gng (Tn,) < /2

because g (zn,) 4 0 as m — oco. This contradicts to the Inequality 6.1.

Method II: Let ¢ > 0. Fix z € A. Since g,(x) | 0, there is N(z) € N such that 0 < g,(z) < € for
all n > N(z). Since gy, is continuous, there is §(z) > 0 such that gy (,)(y) < € for all y € A with
|z —y| < 0(x). If we put J, := (x—d(x),z+6(x)), then A C |J,c4 Jo. Then by the compactness of A,
there are finitely many 1, ..., z, in A such that A C J,, U---UJ,, . Put N := max(N(x1),..., N(z,)).
Now if y € A, then y € J(z;) for some 1 <4 < m. This implies that

gn(y) < gn@)(y) <€
for all n > N > N(x;). O

7. ABSOLUTELY CONVERGENT SERIES

Throughout this section, let (a,) be a sequence of complex numbers.

o0 o
Definition 7.1. We say that a series Zan 1s absolutely convergent ifz lan| < oco.

n=1 n=1
oo

Also a convergent series Z an 18 said to be conditionally convergent if it is not absolute convergent.

n=1
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o
1 n+1
Example 7.2. Important Example : The series Z% s conditionally convergent when
n

n=1
O<a<l.
This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.

For instance, if we consider the function f :[1,00) — R given by

fz) = =y

- if n<z<n+l.
n

oo
If o =1/2, then / f(z)dz is convergent but it is neither absolutely convergent nor square integrable.
1

o
Notation 7.3. Let o : {1,2...} — {1,2...} be a bijection. A formal series Zag(n) is called an

n=1
0o
rearmngement Of E Anp.
n=1

Example 7.4. In this example, we are going to show that there is an rearrangement of the series

o A
-1 i+1
E i 1s divergent although the original series is convergent. In fact, it is conditionally conver-
i
i=1
gent.

We first notice that the series ), 2i1_1 diverges to infinity. Thus for each M > 0, there is a positive
integer N such that

i=1
for alln > N. Then there is Ny € N such that
2i—1 2 '

=1

By using (%) again, there is a positive integer No with N1 < Na such that
Ny

1 1 1 1
221—1_§+ Z 2¢—1_Z>2'

i=1 N1<i<Na

To repeat the same procedure, we can find a positive integers subsequence (Ny) such that

N1
1 1 1 1 1 1
N — B N — —— >k

ZQi—l 2+ Z 2i—1 4+ Z 2i—1 2k

=1 N1<i<Na Nj_1<t<Ng
for all positive integers k. So if we let a, = (712:#1 , then one can find a bijection o : N — N such that
the series Z ag(;) 18 an rearrangement of the series Z ———— and diverges to infinity. The proof

i
i=1 i=1

is finished.
o o
Theorem 7.5. Let Zan be an absolutely convergent series. Then for any rearrangement Zag(n)
n=1 n=1

oo o0
s also absolutely convergent. Moreover, we have Z Qp = Z Ag(n)-

n=1 n=1
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Proof. Let o :{1,2...} — {1,2...} be a bijection as before.
We first claim that ) aq(,) is also absolutely convergent.
Let € > 0. Since ), |a,| < oo, there is a positive integer /N such that

lan 1|+ Flansp| <& eeeeeee (%)
for all p = 1,2.... Notice that since o is a bijection, we can find a positive integer M such that
M > max{j:1<o0(j) < N}. Then o(i) > N if i« > M. This together with () imply that if i > M
and p € N, we have
|ag(ipry| e |y (itp)| < e

Thus the series ) ag(n) is absolutely convergent by the Cauchy criteria.
Finally we claim that Y a, = >, o). Put I =3 a, and I' = 3 a,(). Now let ¢ > 0. Then
there is V € N such that

N

Il—zan|<€ and |anqq|+ - tlansp <g eeiens (s5)

n=1

for all p € N. Now choose a positive integer M large enough so that {1,...., N} C {c(1),...,0(M)} and

M
|l — Z%(z‘)’ < e. Notice that since we have {1,..., N} C {o(1),...,0(M)}, the condition (*x) gives
i=1

N M
‘Zan - Zao‘(i)’ < Z la;| < e.
n=1 =1

N<i<oo
We can now conclude that

N N M M
=V <= an] + 1D an = ag N1l <3
= n n 0(1)|+|Zaa(z) |— €.

n=1 n=1 =1 i=1

The proof is complete. O

8. POWER SERIES

Throughout this section, let

i=0
denote a formal power series, where a; € R.

Lemma 8.1. Suppose that there is ¢ € R with ¢ # 0 such that f(c) is convergent. Then
(i) : f(z) is absolutely convergent for all x with |z| < |c|.
(ii) : f converges uniformly on [—n,n| for any 0 <n < |c|.

Proof. For Part (i), note that since f(c) is convergent, then lim a,c™ = 0. So there is a positive integer
N such that |a,c"| <1 for all n > N. Now if we fix |z| < ||, then |z/c| < 1. Therefore, we have

00 N—-1 N—-1

Do lanlla <37 lanllz" + D lanc"lle/cl® < Y lanllz"| + ) |z/e]" < oo

n=1 n=1 n>N n=1 n>N
So Part (i) follows.
Now for Part (i7), if we fix 0 < n < |c| ,then |a,z"| < |a,n|™ for all n and for all z € [—n,n]. On the
other hand, we have ) |a,n"| < oo by Part (i). So f converges uniformly on [—n,n] by the M-test.
The proof is finished. O



17

Remark 8.2. In Lemma 8.9(ii), notice that if f(c) is convergent, it does not imply f converges
uniformly on [—c, c] in geneml

For example, f(x) :=1+ Z . Then f(—1) is convergent but f(1) is divergent.

Definition 8.3. Call the set dom f:={x € R: f(c) is convergent } the domain of convergence of f
for convenience. Let 0 < r := sup{|c|: c € dom f} < co. Then r is called the radius of convergence

of f.

Remark 8.4. Notice that by Lemma 8.9, then the domain of convergence of f must be the interval
with the end points xr if 0 < r < oco.

When r = 0, then dom f = {0}.

Finally, if r = oo, then dom f =R.

Example 8.5. If f(z) =Y ..°  nla™, then r = (0). In fact, notice that if we fir a non-zero number
x and consider lim,, |(n + 1)lz"*|/|nlz"| = oo, then by the ratio test f(x) must be divergent for any
x#0. Sor =0 and dom f = (0).

Example 8.6. Let f(z) = 1+ 3.0 2"/n". Notice that we have lim,, [z"/n™|'/" = 0 for all 2. So
the root test implies that f(x) is convergent for all x and then r = oo and dom f =R.

Example 8.7. Let f(z) = 1+ Y02 2"/n. Then lim, |2""/(n + 1)| - [n/a™| = |z| for all x # 0.
So by the ration test, we see that if |x| < 1, then f(z) is convergent and if |x| > 1, then f(x) is
divergent. So r = 1. Also, it is known that f(1) is divergent but f(—1) is divergent. Therefore, we
have dom f =[-1,1).

Example 8.8. Let f(z) = Y. 2"/n?. Then by using the same argument of Example 8.7, we have
r = 1. On the other hand, it is known that f(£1) both are convergent. So dom f =[—1,1].

Lemma 8.9. With the notation as above, if r > 0, then f converges uniformly on (—n,n) for any
O<n<r.

Proof. Tt follows from Lemma 8.1 at once. g

Remark 8.10. Note that the Ezample 8.7 shows us that f may not converge uniformly on (—r,r).
In fact let f be defined as in Example 8.7. Then f does not converge uniformly on (—1,1). In fact, if
we let s, (x) =Y pep apx®, then for any positive integer n and 0 < x < 1, we have

xn—f—l :C2n :C2n
...... o>
n+1 + + 2n — 2
1

From this we see that for each n, we can find 0 < x < 1 such that |san(x) — s,(x)| > 7. Thus f does
not converges uniformly on (—1,1) by the Cauchy Theorem.

|s2n () = sn ()] =

Proposition 8.11. With the notation as above, let £ = lim |a,|"/™ or lim ‘7n+’1‘ provided it exists.
n
Then
: if 0<{<o0;
r=+<0 if £=o00

o0 if £=0.
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Proposition 8.12. With the notation as above if 0 < r < oo, then f € C*®(—r,r). Moreover, the
k-derivatives f*)(x) = Y sk akn(n —1)(n—2)- - (n—k+1D)a"* for all x € (—r,7).

Proof. Fix ¢ € (—r,r). By Lemma 8.9, one can choose 0 < n < r such that ¢ € (—n,n) and f converges
uniformly on (—n,n).

It needs to show that the k-derivatives f(*)(c) exists for all k > 0. Consider the case k = 1 first.

If we consider the series Y °° ((ana™) = >°° na,z™ !, then it also has the same radius r be-

1/n n—1

cause limy, |na,|'/" = lim, |a,|'/". This implies that the series > °° | na,= converges uniformly
n (—n,n). Therefore, the restriction f|(—n,n) is differentiable. In particular, f’(c) exists and

fe) = Xnsy nanc" ™

So the result can be shown inductively on k. O

Proposition 8.13. With the notation as above, suppose that r > 0. Then we have

n n+1
/f t)dt = Z/antdt +1x

for all x € (—r,r).

Proof. Fix 0 < x < r. Then by Lemma 8.9 f converges uniformly on [0, x]. Since each term a,t" is
continuous, the result follows. ]

Theorem 8.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(—r)) exists.
Then f is continuous at x =1 (resp. © = —r), that is lgn_f(:ﬂ) = f(r).

Proof. Note that by considering f(—x), it suffices to show that the case x = r holds.
Assume r = 1.

Notice that if f converges uniformly on [0, 1], then f is continuous at x = 1 as desired.
Let € > 0. Since f(1) is convergent, then there is a positive integer such that

for n > N and for all p =1,2.... Note that for n > N; p=1,2... and = € [0, 1], we have

Snip(T) = 8p(2) = app12" T+ ap o™ Fap T 4 + apppr" !
+ an+2(xn+2 _ anrl) + an+3(xn+2 _ anrl) T + an+p(xn+2 _ anrl)
+a xn+3 _ xn+2 g +a xn+3 _ xn+2
(8.1) n+3( n+p

+ an+p(xn+p _ anrpfl).

Since z € [0, 1], [a"Th+L — gntk| = pntk _ gnth+l Qo the Eq.8.1 implies that
|Sntp()—sp(x)] < 5(:cn+1+(:c”+1—:c”+2)+(:6”+2—x”+3)+- . -+(:c”+p_1—:c”+p)) = 5(2x”+1—x”+p) < 2e.

So f converges uniformly on [0, 1] as desired.
Finally for the general case, we consider g(x) := f(rz) = ), apr"a™. Note that lim, lanr™| V" =1
and ¢g(1) = f(r). Then by the case above,, we have shown that

f(r)=9(1) = lim g(z) = lim f(z).
The proof is finished. O
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Remark 8.15. In Remark 8.10, we have seen that f may not converges uniformly on (—r,r). How-
ever, in the proof of Abel’s Theorem above, we have shown that if f(%r) both exist, then f converges
uniformly on [—r,r] in this case.

9. REAL ANALYTIC FUNCTIONS

Proposition 9.1. Let f € C*(a,b) and c € (a,b). Then for any x € (a,b) \ {c} and for any n € N,
there is & = {(x,n) between ¢ and x such that

n (e s plnt1)
foy =31 ()(:c—c)k-i—/ fT(t)(x—t)"dt

k!
k=0

o (k)
Call Z / k'(c) (z — ¢)* (may not be convergent) the Taylor series of f at c.
k=0 ’

Proof. 1t is easy to prove by induction on n and the integration by part. O

Definition 9.2. A real-valued function f defined on (a,b) is said to be real analytic if for each
c € (a,b), one can find § >0 and a power series Y oo ax(z — c)* such that

f(z) = Z a(z —c)k (%)
k=0

for allx € (¢ —9d,c¢+6) C (a,b).

Remark 9.3.

(i) : Concerning about the definition of a real analytic function f, the expression (x) above is
uniquely determined by f, that is, each coefficient ay’s is uniquely determined by f. In fact,
by Proposition 8.12, we have seen that f € C*(a,b) and

forall k=0,1,2,....

(ii) : Although every real analytic function is C*°, the following example shows that the converse
does not hold.
Define a function f: R — R by

B e~ 1/a* if x #0;
f(x)_{o if ©=0.

One can directly check that f € C®(R) and f*)(0) = 0 for all k = 0,1,2.... So if f is real
analytic, then there is § > 0 such that ap = 0 for all k by the Eq.(xx) above and hence f(x) =0
for all x € (—0,9). It is absurd.

(iii) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is

similarly defined as in the real case. However, we always have: f is complex analytic if and
only if it is C'°.

Proposition 9.4. Suppose that f(z) := > 72, ap(x—c)¥ is convergent on some open interval I centered
at ¢, that is I = (¢ —r,c+ ) for some r > 0. Then f is analytic on I.
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Proof. We first note that f € C°°(I). By considering the translation x — ¢, we may assume that ¢ = 0.
Now fix z € I. Now choose ¢ > 0 such that (z — 0,z + ) C I. We are going to show that

fl@)=>"

J=0

F9 (2 i
ﬂ( )(:c —z).

for all x € (2 — 9,z + 9).
Notice that f(z) is absolutely convergent on I. This implies that

flx) = Zak(:c —z+2)F

1
k=0  j=0 J:
© Y/
=S (k1) (4 Doy 2
j=0 k>j It
()
:Zf .|z)(:c—z)3
Jj=0 J
for all x € (z — J, 2 + 0). The proof is finished. O

Example 9.5. Let a € R. Recall that (14 ) is defined by e(+2) for x> —1.
Now for each k € N, put

<a>: o if k#0;
1 if = =0.

Then

whenever |z| < 1.
Consequently, f(x) is analytic on (—1,1).

Proof. Notice that f*)(z) = afa —1)------ (@ —k+1)(1+2)*F for |2] < 1.
Fix |z| < 1. Then by Proposition 9.1, for each positive integer n we have

nl (k) z £(n)
f(:c)zzf k!<0)xk+/0 (i _(fi!(:c—t)”_ldt

k=0

So by the mean value theorem for integrals, for each positive integer n, there is &, between 0 and x

such that - -
‘ f " (t) n—1jg, _ f " (fn) _ n—1
/0 o = )
. o L f(n) (gn) o n—1
Now write &, = npx for some 0 <7, <1 and R,(z) := (=) (x —&,)" "x. Then

Ru(z) = (a=n+1) (n _ 1) (Inn2)* ™" (2 =)~z = (a—n-+1) <n B 1> x”(1+77n$)a_1(%)n_1.
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We need to show that R,(z) — 0 as n — oo, that is the Taylor series of f centered at 0 converges

o
to f. By the Ratio Test, it is easy to see that the series Z(a —k+1) (k: a 1) yk; is convergent as
k=0
ly| < 1. This tells us that lim |(v — n + 1)( @ 1) z"| = 0.
n n —

On the other hand, note that we always have 0 < 1 —n,, < 1+n,z for all n because x > —1. Thus, we
can now conclude that R, (z) — 0 as |z| < 1. The proof is finished. Finally the last assertion follows
from Proposition 9.4 at once. The proof is complete. ]
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